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Accurately predicting a battery’s life is an important issue for the energy storage community.  It is also a long-
standing challenge due to the tremendous technical difficulties that must be overcome to allow effective and 
reasonable prediction.  Recently, with advancements in experimental techniques, numerical modeling, and computer 
simulation capabilities, we found that there exists an opportunity for us to address this issue by developing a 
sensible, concurrent approach using several types of numerical models to predict battery life via simulation.  In this 
paper, we discuss how the equivalent-circuit model can be used in simulating battery performance, particularly the 
capacity change with cycling and aging conditions, to predict its cycle and calendar life.  We are proceeding with 
experimental validation to corroborate our prediction from the models and enhance confidence in reaching a reliable 
estimate of battery life. 
 
Introduction 
 
Valve-regulated lead-acid (VRLA) batteries continue to be the most favorable system used in stationary energy 
storage applications due to its availability, maturity, and lower cost.  Development of a battery life prediction 
capability is being pursued in this work, particularly for float type applications.  The lack of such a prediction 
capability contributes to a general uncertainty regarding the need for battery replacement and forces one to replace 
cells prior to complete wear out in order to avoid system outages.  The inability to predict battery failure has led to a 
situation in back up power applications where costly inspections and performance monitoring must be performed 
frequently to verify system readiness in case a utility power outage occurs.  This situation is especially troublesome 
given that one of the expected benefits of a VRLA system is reduced maintenance cost.  Inductive battery models 
forming an adaptive approach that can be used to anticipate failures seem to offer a favorable solution to this 
situation.  The objective of this work is to predict battery failures accurately so that maintenance and replacements 
are furnished in a timely manner. 
 
The approach we are taking consists of using (1) an equivalent circuit model (ECM) technique to simulate battery 
performance characteristics and augment the test data base, (2) a fuzzy logic (FL) technique to recognize 
degradation patterns and failure modes in the battery behavior, and (3) an artificial neural network (ANN) technique 
to train a model to predict battery life in an adaptive manner.  Complicated impacts on the battery performance from 
the environmental and operating conditions can be effectively considered in the model to improve the capability and 
accuracy of prediction.  This paper will focus on discussion of the ECM approach and how it can be used to simulate 
and predict battery performance and life.   
 
The Equivalent Circuit Model (ECM) 
 
We found that the ECM approach can be very simple but effective in modeling battery performance [1-4].  The 
ECM is primarily based on the cell’s impedance response to external conditions imposed by a battery’s operating 
regime.  For energy storage applications, the operating regime usually includes two parts: the standby/storage mode 
and the mission/duty mode; each exhibits its unique impacts on the battery life.  Our model must accommodate both 
modes in order to accurately predict battery life in an application.  We will discuss how the model is constructed, 
battery performance simulated, and capacity fade predicted.  The results of the ECM simulation will then be 
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combined with experimental test data for the FL and ANN model developments for degradation and failure 
detection and adaptive battery life prediction, respectively. 
 
Before we discuss the model construction, an important point worth making is that, in any battery modeling and 
simulation work, accurately predicting battery performance or life and thus achieving a high fidelity of simulation, 
relies on the availability of a set of data that adequately represents the battery chemistry.  However, a useful amount 
of data for VRLA batteries is unavailable to us now.  Therefore, we are using a set of data from a lithium-ion battery 
chemistry that was tested under the US Department of Energy Advanced Technology Development Program.  
Accelerated life testing [5,6] illustrates the validity of predicting calendar life under typical storage aging conditions, 
and another set of data collected for a nominal VRLA battery tested in our laboratory [7] for cycle life study under 
overcharging conditions demonstrates the viability of cycle life prediction. 
 
Figure 1 illustrates the ECM used in this work.  There are three 
major parts in the model.  The first one is the static part shown on 
the upper left hand side of the diagram, representing battery’s 
characteristic thermodynamic properties, such as the open circuit 
voltage (OCV) versus the state-of-charge (SOC) and the nominal 
capacity.  Vo represents the cell voltage at a specific SOC as an 
initial condition.  The second part is the combination of [R1 + 
(R2C)] shown on the upper right hand side of the diagram.  The 
serial resistance R1 represents the ohmic behavior of the cell, and 
the (R2C) circuit the faradic.  This is the dynamic response 
depicting the kinetic properties of the cell in reaction to any charge 
or discharge regime.  The last part shown in the lower part of the 
diagram is either an electrical load for discharge or a source for 
charging, depending on the testing/operating conditions. 
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Figure 1.  ECM used in this work. 

 
To construct a valid ECM, we need to 
have the SOC-dependent OCV and 
resistance (R1 and R2) values incorporated 
into the model.   In Figure 2, we show a 
set of SOC-dependent values for the 
lithium-ion battery cell chemistry used in 
this work to illustrate calendar life 
prediction.  This particular chemistry was 
tested in a nominal 18650-sized lithium-
ion cell consisting of MAG-10 graphite as 
the active negative electrode material, 
LiNi0.8Co0.15Al0.05O2 the active positive 
electrode material with poly(vinylidine 
difluoride) binder, and 1.2M LiPF6 in 
ethyl carbonate/ethyl methyl carbonate 
(3:7 weight % ratio) electrolyte [5,6].  The 
OCV values were determined from a 
typical cell discharged at C/25 rate.  The 
resistance versus SOC relationship can be 
derived from two sources of data: either 

from AC impedance measurements or from DC galvanostatic polarization, which yields discharge curves at different 
rates.  A more detailed discussion of how to derive these values can be found in [8].  We should note that in the 
model, the total impedance Rc was assumed to consist of two independent components, Rc

o and Rc
s, as shown in 

Figure 2, to approximate the resistance change with SOC.  The function of Rc
o follows a power law with SOC, while 

that of Rc
s is an exponential function with SOC.  Although these functions are empirical and do not necessarily 

imply any physical meaning, the shape of the formula could provide us some clues as to what process might 
determine the physical change of the cell performance.  The values of R2 were obtained from subtracting R1 from Rc.  
The capacitance, C, value can be derived from the characteristic frequency, fc2 = 1/R2C, which is yielded from the 
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Figure 2.  The OCV and resistance versus SOC curves needed for constructing a 
viable ECM for the specific battery. 



Nyquist plot of the cell as demonstrated in [8].  The time-dependent cell voltage can then be calculated from the 
ECM for a constant-current condition [4], according to (1): 

 ( )CRt
o

CRt eIRIRVe
C

QtV 22 /
21

/ 1)0()( −− −−−+= , (where I = constant) (1) 

where Q(0) is the nominal capacity, and Vo the nominal SOC-dependent cell OCV.  Thus, for any given time step, 
the charge passed is calculated to derive the SOC value at the end of the step, and the associated OCV and resistance 
values are plugged into (1) to give the cell voltage as a function of time.   
 
Similarly, for the VRLA model construction, we took a similar approach, where the SOC-dependent OCV and 
resistance values are shown in Figure 3. 

Figure 3.  OCV and resistance values 
used in the construction of a VRLA 
model for cycle life prediction. 
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Results and Discussion 

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

0%10%20%30%40%50%60%70%80%90%100%

SOC, %

C
el

l V
ol

ta
ge

, V

C/25
C/25-exp
C/10
C/1
C/1-exp
2C
3C
5C
10C

Figure 4.  Discharge curves simulated for various rates in comparison with test 
data at C/25 and C/1 rates. 

 
Figure 4 shows the simulated discharge 
curves of the nominal 18650-sized lithium-
ion cell using the parameters depicted in 
Figure 2.  The C/25 and C/1 rate curves 
were validated with experimental data 
reported in [5,6,8], and an excellent 
agreement was found, indicating a high 
fidelity of simulation has been obtained.  A 
similar simulation and validation for the 
nominal VRLA cell [1] using the 
parameters shown in Figure 3 was also 
demonstrated as shown in Figure 5, where 
simulated C/3 rate charging and discharging 
curves are compared with the experimental 
data. 
 



Built upon the confidence yielded from such validation, 
we can further explore the possibility of predicting the 
capacity for the cell under thermal aging or cycling 
conditions.  The thermal aging approach is often used 
for accelerated life tests, and analysis and extrapolation 
of the accelerated life test results can lead to battery life 
prediction at operating conditions [5,6].  The thermal 
aging process provides us two aspects of information 
regarding degradation of the cell.  One is how 
temperature accelerates the cell degradation, which can 
teach us how to model the temperature dependence of 
thermal degradation in the ECM.  Another important 
aspect is the aging speed, which depicts the scale of 
how fast the degradation rate is and how it impacts the 
battery life.  The aging phenomena directly affect the 
battery service life during the standby or storage mode.  
On the other hand, stressful cycling conditions can be 
imposed on cells for accelerated cycling life tests.  In 
this case, we will show how a severe overcharging 
cycling can affect a VRLA cell cycle life [7] and how to 

use the ECM to simulate the battery performance [1], 
reflecting the effect of mission or duty cycle on the 
battery life.   
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Figure 5.  Simulated charging and discharging curves for a 
nominal VRLA cell at C/3 rate and compared with experimental 
results. 

 
Figure 6 shows a series of thermal aging tests on a 
lithium-ion cell aged at 55°C and 100% SOC over 
about 20 weeks [5,6].  Every 4 weeks, the cell was 
taken out of aging and subjected to a reference 
performance test (RPT) [9], in which the C/1 capacity 
was determined, as shown in Figure 6.  We observed 
increasing polarization resistance in the cell, which 
results in decreasing cell capacity.  This behavior is 
better shown in Figure 7, where the polarization 
resistance of the cell is displayed as a function of SOC 
for each RPT after each subsequent 4 weeks of aging.   
 
It is important to recognize that the cell resistance 
behavior as a function of SOC essentially has two 

distinct contributions; each also varies with 
SOC.  This behavior is better recognized in 
the right-hand graph in Figure 7, where the 
two distinct contributions of resistance are 
shown as a function of SOC for RPT 5.  The 
first contribution, which is dominant in the 
high SOC regime (>50% SOC), follows a 
power law.  The second contribution, which 
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Figure 6.  Discharging behavior of the lithium-ion cell after five 
sequential thermal aging tests, each lasting for 4 weeks, at 55°C 
and 100% SOC.   
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Table 1.  Parameters used in equation (2): R2 = a + b (SOC)c + d exp((1-SOC)·e)
for resistance calculation. 
RPT 1 2 3 4 5 

a 0.0099 0.0187 0.0488 0.0628 0.0745 
b 0.03 0.04 0.05 0.06 0.08 
c 1.7 1.5 1.3 0.5 0.5 
d 4 x 10-6 8 x 10-6 1.6 x 10-5 3.2 x 10-5 6.4 x 10-5 
e 11.9 11.9 12 12 11.8 
dominates in the low SOC regime (<50% 
SOC), follows an exponential relationship 

ith SOC.  Equation (2) expresses the generic form of these two contributions: 

R2 = a + b (SOC)c + d exp((1-SOC)·e) (2) 

 is also critical to realize that the second contribution of resistance determined the capacity of the cell under test 
d is thus the major factor that results in the capacity fade.  It is not clear what the underlying mechanism is that 
used this polarization resistance to rise and lead to capacity fade.  Nonetheless, by assuming a consistent pattern of 
lationship for both contributions to the resistance increase with aging duration (Table 1), we were able to simulate 



discharging curves for the five 
aging tests, as shown in Figure 8.  
The resulting capacity from the 
simulation is quite consistent 
with the experimental value 
determined from each RPT.  This 
consistency indicates that our 
ECM prediction of the batte
capacity fade is achievab
examining the data for all aging
conditions, we will be able to 
develop a correspondence
between aging conditions and 
capacity fade for this chemistry.  
Thus the fading and calendar life
of the cell can then be predicted. 
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Figure 7.  Polarization resistance changes as a function of SOC in the lithium-ion cell after 
five sequential thermal aging periods at 55°C and 100% SOC; each lasts for 4 weeks.   
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Likewise, we can also assume that cell 
degradation from cycling conditions is 
reflected in the cell impedance changes.  
Figure 9 uses an example observed in a 
VRLA cell [7] that underwent a 40% 
overcharging and 100% discharge regime.  
The severe cycling regime was designed to 
accelerate the degradation from cycling so 
the cell’s cycle life could be measured 
quickly.  More detailed descriptions of the 
experimental setup and test protocols for 
this particular VRLA cell test were reported 
elsewhere [7,10] and will not be repeated 
here.  The most important aspect found in 
the experiments was that at least two 
degradation mechanisms were associated 
with capacity fade, which in turn resulted in 
the failure of the cell operation.  In the 
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Figure 10.  Cell capacity change with cycle number as 
simulated from the ECM using parameters shown in Figure 9.
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initial stage, the overcharging caused cell gassing and venting, which subsequently led to water loss and cell 
imbalance.  This was the cause for the capacity fade that appeared around 250 cycles as a result of repeated 
continuous overcharging and deep discharging tests.  The second degradation process became dominant after the 
cell suffered from the results of repeated severe gassing, which causes a significant expansion in the electrode active 
materials and a gradual loss of contact with the grid.  Repeated overcharging also caused severe grid corrosion, 
particularly in the positive plates.  The combination of electrode expansion and grid corrosion led to increased 
contact resistance, as shown in Figure 9, and eventually the cell’s failure.  The transition in the cell capacity fade 
rate around 320 cycles revealed the change in the degradation mechanism that led to failure.   
 
Using the resistance values shown in Figure 9, in which the contact resistance change was included in R1 and the 
faradic polarization resistance increase associated with water loss in R2, we were able to calculate the resulting 
capacity for each cycle under the repeated overcharging and discharge regime.  The capacity as a function of cycle 
number is shown in Figure 10, where experimental data and the simulated results are compared.  As the resistance 
values changed with cycle number, the resulting capacity fade was also varied.  The simulation captured the 
resulting capacity fade rate change via the incorporation of the mechanism change.  We therefore successfully 
modeled the cell degradation and cycle life for this nominal VRLA cell.   
 
Conclusion 
 
A simple ECM was used in this work to show that, with a sufficient amount of data collected and a sufficient 
understanding of the battery degradation process, we can develop a highly reliable battery performance model to 
predict either calendar or cycle life.  Thermal aging is the most common cause of cell degradation related to calendar 
life.  Repeated overcharging and deep discharging are frequently the major causes of cell degradation in cycle life.  
Our simulation captured both important aspects of the degradation processes in the calendar and cycle life behavior.  
Thus life prediction can be achieved and validated for both standby/storage and mission/duty periods.  When 
available, this subset of data can then be used in the ANN model development for adaptive battery life prediction. 
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